
 

 

  
Abstract—In this article we study the retrospective inverse 

problem. The retrospective inverse problem consists of in the 
reconstruction of a priori unknown initial condition of the dynamic 
system from its known final condition. Existence and uniqueness of 
the solution is proved. 
 

Keywords—Hermite functions, retrospective problem, integral 
equation, fractal diffusion.  

I. INTRODUCTION 
N this article we study the retrospective inverse problem. 
The retrospective Inverse problem consists of in the 
reconstruction of a priori unknown initial condition of the 

dynamic system from its known final condition. The direct 
problem of heat conductivity is well-posed; the inverse 
problem is not well-posed. In mathematics the vast majority of 
inverse problems set not well-posed - small perturbations of 
the initial data (observations) can correspond to arbitrarily 
large perturbations of the solution. The French mathematician 
Jacques Hadamard in 1939 defined, the problem is called 
correct or well-posed problem if a solution exists, the solution 
is unique, the solution’s behavior hardly changes when there’s 
a slight change in the initial condition. If at least one of these 
three conditions is not fulfilled, problems are termed ill-posed 
or not well-posed. The most often in the case of ill-posed 
problems of the third condition are violated the condition of 
the stability of solutions. In this case, there is a paradoxical 
situation: the problem is mathematically generated, but the 
solution cannot be obtained by conventional methods. A 
classic example of ill-posed problem is retrospective problem 
for heat equation on the real axis. Mathematically retrospective 
problem leads to a Fredholm integral equation of the first kind: 
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in which ˆ ( )f x - is the initial distribution of the temperature 
field, ˆ( , )u t x - is the distribution of the fields in the moment 
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of time t. As shown in [1], the solution of equation (1) 
expressed by the formula: 
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II. PROBLEM STATEMENT 
In the inverse problem of heat conductivity the initial 
distribution of sources is unknown. The initial distribution of 
sources generates the specified temperature distribution in an 
infinite piecewise-homogeneous rod In. Mathematical 
statement of the problem consists in finding a solution 
separatist system (n+1) equations of parabolic type 
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here ( , )u t x  - unknown function, ( )f x  - set function, 
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, , , ,k k k k
mi mi mi miα β γ δ  - given real number, in which the 

condition of unlimited solvability of the problem considered 
fulfilled [2].  
The solution to problem (3)-(6) is of the form: 
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where ( , , ) , 1,..., 1ksH t x k s nξ = + - influence function [2] 
of the mixed boundary value problem. 

Retrospective problem for the heat equation in the case of 
infinite piecewise-homogeneous rod consists in the 
determination of the unknown initial distribution of 
sources ( )f x , which generates the specified temperature 

distribution ( , )u xτ  in the moment of time t τ= . 

III. TRANSFORMATION OPERATORS 
Method of transformation operators is used to solve the 
problem [2]. Necessary definitions from [2], [11], [12]. The 
direct ˆ:J f f→  f and inverse 1 ˆ:J f f− →  
transformation operators are set equalities: 
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Here *( , ), ( , )x xϕ λ ϕ λ -are the eigenfunctions [13], [14] of 
the direct and coupling Sturm–Liouville problems for the 
Fourier operator in piecewise-homogeneous axis In. 
Eigenfunction 
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is a solution of the system of separate differential equations 
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is a solution of the system of separate differential equations 
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Let for some λ  of the considered boundary value problems 
have nontrivial solutions *( , ), ( , )x xϕ λ ϕ λ , in this case the 
number λ  is called the eigenvalue [13], [14], corresponding 
solutions *( , ), ( , )x xϕ λ ϕ λ  - is called the eigenfunctions of 
the direct and coupling Sturm–Liouville problems, 
respectively. In the further we shall adhere to the following 
normalization of eigenfunctions: 
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IV. ANALOGUES OF THE SYSTEM THE HERMITE FUNCTIONS ON 
PIECEWISE-HOMOGENEOUS REAL AXIS 

Let define analogues of the system the Hermite functions on 
piecewise-homogeneous real axis: 
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where jH - the system of the classical orthogonal Hermite 
functions [1]. 
Lemma 1. Functions 

,

*
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j nj nH x H x  form biorthogonal 

system of functions by piecewise-homogeneous real axis. 
Proof. We have the equality: 
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We change the integrals of places, we get: 
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On the decomposition theorem, we have: 
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V. MAIN RESULT 
The problem of determining the initial distribution of the 
temperature field ( )f x  mathematically leads to the separate 
system of integral equations: 
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Method of transformation operators applicable to solving 
separate system of integral equations (8). 
Theorem 1. If the function )(),( RSxu ′∈τ  and for her the 
condition 
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that the separate system of integral equations (8) has a unique 
solution )()( 2 nIHxf α∈  (definition )(2 nIH α [6]), is 
according to the formula: 
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Proof . Let’s apply the transformation operator 1−J  to 
separate system of integral equations (8). As a result come to a 
model integral equation (1). Let’s apply the operator J  in 
both parts of the obtained equality (9); as a result, taking into 
account the continuity of the operator J , we find the unknown 
distribution of temperature: 
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from the definition of the operator conversion of J  the 
equality follows: 
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VI. RETROSPECTIVE PROBLEM FOR ITERATION HEAT 
EQUATION 

a) Homogeneous case. Let Rxxu ∈),,(ˆ τ  - decision 
iteration heat equation  
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We consider the problem of determining of initial values 

qixfi ,...,0),(ˆ =  of the system of functions 

,,...,0),,(ˆ qixui =τ  that is on known to the solution and its 
derivatives up to order q  at time .τ=t  

Let qixvi ,...,0),,(ˆ =τ  - solutions of model heat equations: 
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kJ  - is matrix of size )1()1( +×+ qq  where the diagonal 

connecting elements ,, 1,11,1 +−++ qkqk γγ  consists of units, and 
all other elements are equal to zero. 
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and ,,...,0),()(ˆ
2 qiRHxfi =∈ α  values 

qixvi ,...,0),,(ˆ =τ  must be taken from the formula (13). 
 
Proof. Let's apply the formula (9) to each of )1( +q  the 

initial conditions )(ˆ xfi  in the model problems (10)-(12). As 
a result we come to (14). 
 

b) The case of piecewise-homogeneous axis. 
Let the initial distribution is unknown, it generates the 
specified distribution at time  
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numbers at which the condition of unlimited solvability of the 

problem (26.15)-(26.18) is fulfilled. Search of the decision 
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*,ϕϕ  - are the eigenfunctions of the corresponding to direct 
and dual Sturm–Liouville problems [5]. They are connected 
with this mixed boundary problem (15)-(18). Application of 
the transformation operator 1−J  leads the studied task to the 
uniform case, that is to the problem (10)-(12).  
Truth of the result is established by the scheme proposed in the 
proof of theorem 2: 
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nF  - is the Fourier transform on the piecewise-homogeneous 
axis with the coupling points [5]. 
 

VII. POWER FUNCTION WITH DISCONTINUOUS COEFFICIENTS 
AND ITS APPLICATION 

We consider the Fourier transform of the Delta function [15] 
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Let’s define analog of the power function as follows 
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We find equality from the definition of the transformation 
operators 
 

[ ] [ ] .; 1 kk
n

k
n

k xxJxxJ == −  
 
The last equality means that the power function with 
discontinuous coefficients is obtained by the action of the 
transformation operator to the power function. 
Theorem 4. The ratio connects the generalized power function 
and differentiation 
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Proof. We have a chain of equalities 
 

( ) ( ) =







== kkk

n x
dx
dJxJ

dx
dx

dx
d

2

2

2

2

2

2

 

22 )1())1(( −− −=− k
n

k xkkxkkJ . 

VIII. RETROSPECTIVE PROBLEM FOR THE SYSTEM OF THE 
DIFFUSION EQUATIONS 

Let’s return to the solution of the separate system of integral 
equations (8) in space of the generalized functions [16] S ′  
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We will convert the found solution. An analogue of the Taylor 
series for the function ),( ξτu  is of the form 
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Let’s find the decomposition of the generalized Taylor series 
for eigenfunction from definition of the generalized power 
function 
 

 
 
 
 

Let’s substitute this decomposition in a formula (22) and let’s 
integrate term by term. We come to the formula (23) in which 
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Let’s substitute decomposition of eigenfunction ),( λϕ x  in 
the generalized power series in a formula (21) we will receive 
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where designation is accepted 
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Thus, the solution of the retrospective problem (21) is 
obtained. 
Remark 1. The generating function for the )(xH jn  is the 
form 
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Corollary 1. If to choose ,),(,1,
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functions )(1 xH j -are the classical Hermite polynomials. 

 

IX. RETROSPECTIVE PROBLEM FOR FRACTAL SYSTEMS OF 
DIFFUSION EQUATIONS 

Retrospective problem for fractal system of diffusion 
equations in the space of generalized functions S ′  leads to the 
separatist system of integral equations: 
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where )(1, zEα - the Mittag-Leffler function [9]. 
We get the solution of the fractal retrospective problem 
repeating reasoning’s from paragraph VII.  
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You can find the generating functions for )(xH jn : 
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We find the explicit expression for the functions )(xH jn . We 
find decomposition of the left part of the formula (26) in the 
Taylor series 
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We get the expression, comparing the two views )(xH jn  
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If 1=n , the formula takes the form 
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Define a "fractal" generalization of the Hermite polynomials 
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then the solution of the fractal retrospective problem has the 
form 
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Corollary 2. In the hyperbolic case 1,2 == nα  the solution 
of the retrospective problem has the form 
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Where 
 

∑∑






=

−






=

− =−=
−

−
=

2

0

22
2

0

2 )1(
)!2)()!2((

!)1()(

j

k

kjk
j

k

j

k

kj
k

j xCx
kjk

jxH

.
2

)1()1( jj xx −++
=                                                     (27) 

 
Proof. We replace λ  for λi  in formula (16) for the solution 
of the direct problem. As a result, we get the formula  
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We use the formula (26) 
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In the end we find the solution of the Cauchy problem for the 
hyperbolic equation 
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Remark. If, as an example, take 
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X. THE INVERSE DIRICHLET PROBLEM FOR A HALF-PLANE 
Solution of the inverse Dirichlet problem for the right half-
plane has the form: 
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Let’s repeat the above reasoning. Let’s receive expressions for 
analogues of Hermite polynomials: 
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As a result for the solution of the inverse Dirichlet problem we 
receive the representation in the form of the sum of the Taylor 
series: 
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Corollary 3. If the function )( yf  admit continued with the 
real axis of the complex plane as a whole, the 
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Example 2. Let 22)(),( ylxyxu −−= , then 

2),( yylu −=   therefore, we find 
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XI. CONCLUSION 
In this article the formal solution of the retrospective 

problem is provided. The third aspect in determining the well-
posed problem is not taken into account. Theorem of existence 
and uniqueness of solution are given. From the analysis of the 
formula (9): the solution of the retrospective heat problem with 
discontinuous coefficients is received by replacement in the 
final result of the Hermite functions [1] on the Hermite 
functions with discontinuous coefficients, defined in the 
article. The derivatives )0(ˆ ju  are necessary to replace 

on )(uDn . The noticed analogy allows hoping on the 
possibility of obtaining the solution of problems of 
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mathematical physics in which the Hermite functions with 
discontinuous coefficients. 
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